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Bundle Theory of Improper Spin Transformations
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We give a geometrical description of the action of the parity operator (P̂ ) on non-
relativistic spin 1/2 Pauli spinors in terms of bundle theory. The relevant bun-
dle, SU(2) � Z2 → O(3), is a non-trivial extension of the universal covering group
SU(2) → SO(3). P̂ is the non-relativistic limit of the corresponding Dirac matrix
operator P = iγ0 and obeys P̂ 2 = −1. From the direct product of O(3) by Z2,
naturally induced by the structure of the Galilean group, we identify, in its dou-
ble cover, the time-reversal operator (T̂ ) acting on spinors, and its product with
P̂ . P̂ and T̂ generate the group Z4 × Z2. As in the case of parity, T̂ is the
non-relativistic limit of the corresponding Dirac matrix operator T = γ 3γ 1, and
obeys T̂ 2 = −1.

KEY WORDS: parity transformation; time reversal; non-relativistic spinors; group
theory.

1. INTRODUCTION

As is well known, the effect of proper rotations on non-relativistic spin
1/2 spinors can be described geometrically through the universal covering group
SU (2) of SO(3), that is by the fibre bundle ξs : Z2 → SU(2)

π−→ SO(3). The
state vectors are elements of the Hilbert space C

2; in particular, when normalized
they belong to the 3-sphere S3 which is topologically equivalent to the group
SU (2). The effect of rotations on the ray space can be obtained through the
bundle U (1) → SU (2)

p−→ CP 1 with p
(

z w
−w̄ z̄

) = (
z

w

)
U (1), i.e by considering
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the system of bundles (Socolovsky, 2001):

U (1) Z2

↘ ↙
SU (2)

p ↙ ↘ π

CP 1 SO(3)

(Topologically, U (1) ∼= S1, CP 1 ∼= S2, SO(3) ∼= RP 3, and Z2
∼= S0; in SU(2),

|z|2 + |w|2 = 1.) So, for example, a 2π rotation in R
3 leads to a change in the

state vector from an initial point on S3 to its antipode; the vector comes back to
its initial position only after a 4π rotation (Aharonov and Susskind, 1967; Rauch
et al., 1975; Werner et al., 1975; Silverman, 1980).

On the other hand, it is clear that the effect on spinors of all improper rotations
i.e those elements in O(3) which are not in its invariant subgroup SO(3), cannot
be described by ξs . In particular, we want to find the smallest subgroup of U (2),
S±U (2) which contains SU(2) and where we can identify the lifting P̂ of the parity
transformation

P =




−1 0 0

0 −1 0

0 0 −1




in R
3, namely the double cover of O(3),

ξ : Z2 → S±U (2)
�−→ O(3). (1)

As will be shown below, S±U (2) is not simply connected and therefore S±U (2)
is not the universal covering group of O(3). SU (2) will be an invariant sub-
group of S±U (2) and S±U (2) an invariant subgroup of U (2). P̂ in S±U (2) will
act on spinors ψ(t, �x) = (

u(t, �x)
v(t, �x)

)
in SU (2) ∼= S3 by multiplication: ψ(t, �x) →

ψP (t,−�x) = P̂ψ(t, �x). Since P̂ is the non-relativistic limit of the corresponding
parity matrix in Dirac theory, which in the standard representation is given by

P = ±iγ0 = ±i
( I 0

0 −I

)
, where I is the 2 × 2 unit matrix, then

P̂ = ±iI with P̂ 2 = −I. (2)

Then the action on the Pauli spinors is given by

P̂ψ =
(

±i 0

0 ±i

)(
u

v

)
=

(
±iu

±iv

)
=

(
±ei π

2 u

±ei π
2 v

)
. (3)

As in the relativistic case, two space inversions amount to a 2π rotation, which
changes the sign of spinors (Berestetskii et al., 1982; de Azcárraga, 1975; Capri,
2002; Socolovsky, 2004).
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In addition to the improper rotations, the galilean group of transformations,
Gs (de Azcárraga and Izquierdo, 1995), consisting of the matrices(

R �V
0 1

)
, (4)

where R ∈ SO(3) is a rotation, and �V ∈ R
3 is the relative velocity between the ref-

erence frames, makes natural the consideration of the time-reversal transformation
T : we extend Gs to G by replacing R by O ∈ O(3) and 1 by a ∈ {1,−1} ∼= Z2:(O �V

0 a

)
. (5)

The second row in this matrix precisely gives t ′ = −t for a = −1. If we restrict
to �V = �0 we have the subgroup G0 of G given by

G0 =
{(O �0

0 a

)
, O ∈ O(3), a ∈ Z2

}
∼= O(3) × Z2. (6)

The double cover of this group, Ĝ0, to be studied in Section 4, will contain the three
operators P̂ , T̂ and P̂ T̂ acting on spinors. T̂ of course will be the non-relativistic
limit of the corresponding Dirac matrix operator γ 3γ 1. In sections 2 and 3 we
construct P̂ and ξ , and their corresponding equivalent forms P̂� and ξ�.

Finally, we want to stress an important point: the fact that even in non-
relativistic quantum mechanics, P̂ 2 = −I, leads to the breaking of group isomor-
phisms between certain double groups (in the old nomenclature). For example, if
P̂ 2 = I (Landau and Lifshitz, 1997) then the groups Cnv , consisting of a principal
axis of order n and n reflection planes passing through it, and Dn, the dihedric
group of order 2n, are isomorphic. However, if P̂ 2 = −I then these groups become
non-isomorphic. This result might have experimentally verifiable consequences, in
particular in the domain of molecular quantum mechanics, since non-isomorphic
groups could lead to different spectroscopic selection rules due to the difference in
the character tables of their irreducible representations. This controversial subject
deserves further research. See, in this connection, Heine (1977) and Sternberg
(1997).

2. S±U(2): EXTENSION OF SU(2) BY Z2

In the relativistic case there is a remaining ambiguity in the sign of P , and
consequently the same occurs in the non-relativistic limit. We arbitrarily choose
the + sign,

P̂ = iI =
(

i 0

0 i

)
(7)
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and define the set

S±U (2) = SU (2) ∪ SU (2)P̂ = SU (2) ∪ {AP̂ }A∈SU (2). (8)

It is clear that S±U (2) is a group with det(A) = 1 and det(AP̂ ) = −1. If
A′ ∈ SU (2) and B ∈ S±U (2), then det(BA′B−1) = 1 and so BA′B−1 ∈ SU (2)
i.e SU (2) is an invariant subgroup of S±U (2), and if C ∈ U (2) and B ∈ S±U (2),
then det(CBC−1) = det(B) = ±1 and so CBC−1 ∈ S±U (2) i.e S±U (2) is an
invariant subgroup of U (2). Being non-connected, S±U (2) is also non-simply
connected.

Let A = (
z w

−w̄ z̄

) ∈ SU (2), and π : SU (2) → SO(3) the well known 2 → 1
homomorphism given by (Naber, 1997)

π

(
z w

−w̄ z̄

)
=


 Re(z2 − w2) Im(z2 + w2) −2Re(zw)

−Im(z2 − w2) Re(z2 + w2) 2Im(zw)

2Re(zw̄) 2Im(zw̄) |z|2 − |w|2


 . (9)

If ι and ῑ, respectively are the inclusions SU (2)
ι

↪→ S±U (2) and SO(3)
ῑ

↪→ O(3),
and � : S±U (2) → O(3) is defined by

�(A) = π (A), A ∈ SU (2), (10a)

�(P̂ ) =

 −1 0 0

0 −1 0

0 0 −1


 , (10b)

and

�(AP̂ ) = �(A)�(P̂ ) = −π (A), (10c)

then: (i) the diagram

SU (2)
ι

↪→ S±U (2)
π ↓ ↓ �

SO(3)
ῑ

↪→ O(3)

(11)

commutes, and (ii) � is a group homomorphism (epimorphism). In fact, (i)
�(ι(A)) = �(A) = π (A) and ῑ(π (A)) = π (A); (ii) let A,A′ ∈ SU (2), then
�(AA′) = π (AA′) = π (A)π (A′) = �(A)�(A′), �(A(A′P̂ )) = �((AA′)P̂ ) =
�(AA′)�(P̂ ) = π (A)π (A′)�(P̂ ) = π (A)(π (A′)�(P̂ )) = �(A)�(A′P̂ ), �((AP̂ )
(A′P̂ )) = �(AP̂ 2A′) = �(A(−I)A′) = π (A)π (−I)π (A′) = π (A)π (A′) while
�(AP̂ )�(A′P̂ ) = π (A)�(P̂ )π (A′)�(P̂ ) = π (A)π (A′)(�(P̂ ))2 = π (A)π (A′).
Moreover, ker(π ) = ker(�) = {I,−I} = Z2.

It can be easily shown that

1 → SU (2)
ι

↪→ S±U (2)
det−→ Z2 → 1 (12)
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is a short exact sequence of groups and group homomorphisms: ker(det) =
SU(2) = Im(ι) (1 is here the zero group). Then S±U (2) is an extension of SU (2) by
Z2 (MacLane and Birkoff, 1979). Since SU (2) is non-Abelian then the extension
itself is non-Abelian and therefore non-central. However, (12) splits, that is, the
map

γ : Z2 → S±U (2) (13a)

given by

γ (1) = I, and γ (−1) =
(−1 0

0 1

)
= −σ3 (13b)

(one could also define γ (−1) = σ3) is a group homomorphism which obeys

det ◦ γ = IdZ2 (13c)

i.e γ is a right inverse of det. Since γ is a monomorphism, then Z2 is canonically
isomorphic to its image γ (Z2) = {I,−σ3} in S±U (2).

The existence of this splitting allows us to write S±U (2) as a semidirect
product of SU (2) and Z2. This is done in the following section.

3. S±U(2) ∼= SU(2) � Z2

Proposition 3.1. Let 	 : SU (2) × Z2 → S±U (2) be the function defined by

	(A,B) = AB (14)

and

φ : Z2 → Aut(SU (2)) (15a)

the group homomorphism given by

φ(B)(A) = BAB−1. (15b)

Then 	 is a group isomorphism with the composition in SU (2) × Z2 given by

(A′, B ′) · (A,B) = (A′φ(B ′)(A), B ′B) = (A′B ′AB ′−1
, B ′B). (16)

With this composition law, SU (2) × Z2 is the semidirect product of SU (2) by Z2

induced by the action (15b) of Z2 on SU (2), and is denoted by SU (2) � Z2.

Proof: 	(A, I) = A ∈ SU (2) and 	(A,−σ3) = ( −z w
w̄ z̄

)
with det(	(A,−σ3)) =

−1 i.e 	(A,−σ3) ∈ S±U (2) \ SU (2). Let 	̃ : S±U (2) → SU (2) × Z2

be given by 	̃(A) = (A, I) if A ∈ SU (2) and 	̃(B) = (B(−σ3),−σ3) if
B ∈ S±U (2) \ SU (2), then B = AP̂ and therefore B(−σ3) = AP̂ (−σ3) =
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A
( −i 0

0 i

) = ( −iz iw
iw̄ iz̄

) ∈ SU (2), and 	(	̃(B)) = (
iz iw

−iw̄ iz̄

) = B i.e 	̃ = 	−1 and
	 is a bijection.

Finally, 	((A′, B ′) · (A,B)) = 	(A′B ′AB ′−1
, B ′B) = A′B ′AB ′−1

B ′B =
A′B ′AB = 	(A′, B ′)	(A,B) i.e 	 is a group homomorphism. �

In terms of SU (2) � Z2, one can define the bundle (isomorphic to ξ )

ξ� : Z2 → SU (2) � Z2
��−→ O(3) (17)

with �� = � ◦ 	 given by

��(A,B) = �(	(A,B)) = �(AB) = π (A), if B = I, (18a)

and

��(A,B) = π (A)�(−σ3) = −π (A)π (iσ3)

= π (A)


 1 0 0

0 1 0

0 0 −1


 , if B = −σ3. (18b)

In SU (2) � Z2, the parity operator is denoted by P̂� and is given by

P̂� = 	−1(P̂ ) = 	−1(iI) = (−iσ3,−σ3). (19)

This expression is consistent with the commutativity of the diagram

SU (2) × S3 µ−→ S3

ι × Id ↓ ↓ Id

S±U (2) × S3 µι−→ S3

	−1 × Id ↓ ↓ Id

(SU (2) � Z2) × S3 µ�−→ S3

(20)

which gives the maps between the actions µ, µι and µ�, respectively of SU (2),
S±U (2) and SU (2) � Z2 on the Pauli spinors ψ = (

u

v

)
.

4. TIME REVERSAL T̂ AND P̂ T̂

Consider the direct product group

Ĝ0 = S±U (2) × Z2 = (SU (2) ∪ SU (2)P̂ ) × Z2 = SU (2) × {1} ∪ SU (2)

× {−1} ∪ SU (2)P̂ × {1} ∪ SU (2)P̂ × {−1} = {(A, 1)}A∈SU (2)

∪ {(A,−1)}A∈SU (2) ∪ {(AP̂ , 1)}A∈SU (2) ∪ {(AP̂ ,−1)}A∈SU (2) (21)
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and the 2→1 projection

q : S±U (2) × Z2 → O(3) × Z2 (22a)

given by

q(A, 1) = (π (A), 1), q(A,−1) = (π (A)Ry(π ),−1), q(AP̂ , 1)

= (−π (A), 1), q(AP̂ ,−1) = (−π (A)Ry(π ),−1) (22b)

where

Ry(π ) =

 −1 0 0

0 1 0

0 0 −1


 = π

(
0 −1

1 0

)
(22c)

is the π rotation around the y axis. Then, in particular,

q

((
0 −1

1 0

)
,−1

)
= ((Ry(π ))2,−1) =





 1 0 0

0 1 0

0 0 1


 ,−1


 ,

which gives t → t ′ = −t in the spacetime R
3 × R. It is then natural to identify

the time-reversal operator on spinors as the pair

(T̂ ,−1) ∈ Ĝ0 with T̂ =
(

0 −1
1 0

)
= −iσ2 ∈ SU (2) and T̂ 2 = −I, (23)

(Feynman, 1987; Sakurai, 1985). A straightforward calculation shows that q is
a group homomorphism i.e q((C ′, a′)(C, a)) = q(C ′, a′)q(C, a) for all C ′, C in
S±U (2) and a′, a in Z2.

The four connected components of Ĝ0 act on spinors as follows:

(A, 1) : ψ(t, �x) → ψ(A,1)(t, �x) = (A, 1) · ψ(t, �x) := Aψ(t, π (A)�x)

=
(

z w

−w̄ z̄

) (
u(t, π (A)�x)

v(t, π (A)�x)

)
; (24)

(A,−1) : ψ(t, �x) → ψ(A,−1)(t, �x) = (A,−1) · ψ(t, �x) := Aψ(−t, �x)∗, (25a)

in particular

ψ(T̂ ,−1)(t, �x) ≡ ψT̂ (t, �x) = T̂ ψ(−t, �x)∗

=
(

0 −1

1 0

) (
u(−t, �x)∗

v(−t, �x)∗

)
=

(−v(−t, �x)∗

u(−t, �x)∗

)
, (25b)

the time-reversed spinor;

(B, 1) : ψ(t, �x) → ψ(B,1)(t,−�x) = (B, 1) · ψ(t, �x) := Bψ(t, �x), (26a)
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in particular

ψ(P̂ ,1)(t,−�x) ≡ ψP̂ (t,−�x) = P̂ψ(t, �x) =
(

i 0

0 i

) (
u(t, �x)

v(t, �x)

)

=
(

iu(t, �x)

iv(t, �x)

)
, (26b)

the parity-reversed spinor (3) (with + sign);

(B,−1) : ψ(t, �x) → ψ(B,−1)(t,−�x) = (B,−1) · ψ(t, �x) := BT̂ ψ(−t, �x)∗,

(27a)

in particular

ψ(P̂ ,−1)(t,−�x) ≡ ψP̂ T̂ (t,−�x) = P̂ T̂ ψ(−t, �x)∗ = σ2ψ(−t, �x)∗

=
(

0 −i

i 0

) (
u(−t, �x)∗

v(−t, �x)∗

)
=

(−iv(−t, �x)∗

iu(−t, �x)∗

)
, (27b)

the time-parity reversed spinor. This is supported by the fact that

q(P̂ T̂ ,−1) = q

(
i

(
0 −1

1 0

)
,−1

)
=

(
−π

((
0 −1

1 0

))
Ry(π ),−1

)

= (−(Ry(π ))2,−1)

=




 −1 0 0

0 −1 0

0 0 −1


 ,−1




gives �x → �x ′ = −�x and t → t ′ = −t in R
3 × R. Clearly P̂ T̂ = T̂ P̂ and the

matrices P̂ and T̂ generate the abelian group of order 8 , GP̂ T̂ , with multiplication
table given by

P̂ T̂ P̂ T̂ −P̂ −T̂ −P̂ T̂ −I

P̂ −I P̂ T̂ −T̂ I −P̂ T̂ T̂ −P̂

T̂ P̂ T̂ −I −P̂ −P̂ T̂ I P̂ −T̂

P̂ T̂ −T̂ −P̂ I T̂ P̂ −I −P̂ T̂

−P̂ I −P̂ T̂ T̂ −I P̂ T̂ −T̂ P̂

−T̂ −P̂ T̂ I P̂ P̂ T̂ −I −P̂ T̂

−P̂ T̂ T̂ P̂ −I −T̂ −P̂ I P̂ T̂

−I −P̂ −T̂ −P̂ T̂ P̂ T̂ P̂ T̂ I

(28)

As can be easily verified, GP̂ T̂ is isomorphic to Z4 × Z2 with the isomorphism
given by

I → (I, 1), −I → (−I, 1), P̂ → (ι, 1), −P̂ → (−ι, 1),
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T̂ → (ι,−1), −T̂ → (−ι,−1), P̂ T̂ → (−I,−1), −P̂ T̂ → (I,−1), (29)

where Z4
∼= {I, ι,−I,−ι} with I the identity and ι2 = −I , and Z2

∼= {1,−1}.
Notice, however, that at the level of spacetime R

3 × R, P and T generate the
group GPT with table

P T PT

P 1 PT T

T PT 1 P

PT T P 1

(30)

which, as is well known, is isomorphic to the Klein group Z2 × Z2:

1 → (1, 1), P → (1,−1), T → (−1, 1), PT → (−1,−1). (31)

The group isomorphism (14) between SU (2) � Z2 and S±U (2) induces the
isomorphism

� : (SU (2) � Z2) × Z2 → S±U (2) × Z2, (32a)

�((A,B), a) = (AB, a), (32b)

i.e

� = 	 × IdZ2
. (32c)

The group multiplication in the left-hand side of (32a) is

((A′, B ′), a′) · ((A,B), a) = ((A′B ′AB ′−1
, B ′B), a′a). (33)

Defining

Q = q ◦ �, (34)

one has the principal bundle

� : Z2 → (SU (2) � Z2) × Z2
Q−→ O(3) × Z2, (35)

which generalizes (17). Clearly, ker(Q) = Z2. This bundle summarizes all the
geometry of the parity and time-reversal transformations of the Pauli spinors.

The inverse of �, given by �−1(A, a) = ((A, I), a) for A ∈ SU (2) and
�−1(B, a) = ((−Bσ3,−σ3), a) for B ∈ S±U (2) \ SU (2), gives the operators P̂
and T̂ in (SU (2) � Z2) × Z2:

P̂ = �−1(P̂ , 1) = ((−iσ3,−σ3), 1), (36a)

and

T̂ = �−1(T̂ ,−1) = ((−iσ2, I),−1). (36b)
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Finally, in the ray space CP 1, the effect of the time reversal, parity and time-
parity transformations, is obtained from the definition of the projection p in the
introduction, respectively multiplying by U (1) the right-hand sides of (25b), (26b)
and (27b).
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